

NCID MONTHLY RESEARCH MEETING

BRINGING PEOPLE TOGETHER, BRIDGING SCIENCE AND MEDICINE

21 Feb 2025 | Friday | 11.00am – 12.00pm

About the Meeting

Our research meetings are held every third Friday of the month, with the aim to:

- Inspire research ideas and participation
- Provide guidance on research studies
- Foster research collaborations

iCDA Catalyst Grant^

The Catalyst Grant encourages interinstitutional collaborative research in infectious diseases and public health. It is awarded to new Principal Investigators and researchers from academic institutions and hospitals.

iCDA Short Term Fellowship (STF)[^]

The Short Term Fellowship encourages infectious disease researchers who have demonstrated current active research, to either host potential international collaborators/experts in Singapore, or be hosted on a research training attachment, at a leading infectious diseases institution overseas.

11:00 AM Establishing a 3D lung slice model (PCLS) for Singapore Dr Cheong Hui Juan Dorothy

- 11:15 AM Neutrophil hyperinflammation in uncontrolled DM drives tissue destruction in human pulmonary TB Dr Thong Pei Min
- 11:30 AM Antimicrobial coating to prevent implant-associated infections Asst Prof Andy Tay Kah Ping

11:45 AM Establishment of a novel human airway organoids and immune cell co-culture model system to assess human coronavirus infection Dr Louisa Chan

To Register

Visit <u>https://for.sg/feb25researchmeeting</u> or scan QR code.

This will be a Zoom session.

*CME/CNE/CPE points will be awarded *Please register and join the meeting using your work email. [^]The Catalyst Grant and STF, previously administered by NCID, is now administered by the Interim Communicable Diseases Agency (iCDA), and with effect from 1 April 2025 by the Communicable Diseases Agency (CDA).

https://for.sg/feb25researchmeeting

Establishing a 3D lung slice model (PCLS) for Singapore

by Dr Cheong Hui Juan Dorothy (FY23 STF Awardee)

Research Fellow, National University of Singapore

Precision Cut Lung Slices (PCLS) is an *ex vivo* organotypic approach that encapsulates the lung's complexity, surpassing other lung models like ALI. Using *in vitro* assays to assess *in vivo* responses, reduces the reliance on *in vivo* or clinical subjects. PCLS can be used for multiple functional bioassays, including bronchoconstriction assays, infection studies, and drug/vaccine screening. Dr Cheong fine-tuned the PCLS technique for mice lungs under Prof Jane Bourke, University of Melbourne, through the NCID Short-term Fellowship. She now aims to biobank PCLS from other species like bats, non-human primates, and humans, strengthening Singapore's research capabilities in pandemic preparedness by fast-tracking screening of respiratory pathogens and understanding tissue tropism of unknown respiratory disease threats.

Neutrophil hyperinflammation in uncontrolled DM drives tissue destruction in human pulmonary TB

by **Dr Thong Pei Min** (FY23 STF Awardee) Research Fellow, National Centre for Infectious Diseases

Neutrophilia and systemic hyperinflammation are key characteristics of diabetes-tuberculosis (DM-TB), but the mechanisms of how neutrophils worsen TB pathology are unknown. We examine neutrophil functions, host proteases and chemokine protein and gene expression in a cellular model and in patients to identify the mechanism of dysregulation.

Antimicrobial coating to prevent implant-associated infections by Asst Prof Andy Tay Kah Ping (FY23 Catalyst Awardee) Assistant Professor, National University of Singapore

Biofilm formation and microbial colonization of implant surfaces is a significant source of hospitalacquired infections and implant failures. In this talk, I will share our work to create a thin film hydrogel coating with anti-microbial and immuno-modulation properties to prevent and treat prosthetic joint infections through release of chemokines to attract macrophages to eliminate pathogens, and phages for synergistic killing of pathogens with antibiotics.

Establishment of a novel human airway organoids and immune cell co-culture model system to assess human coronavirus infection

by **Dr Louisa Chan** (FY23 Catalyst Awardee) Senior Research Fellow, Lee Kong Chian School of Medicine, Nanyang Technological University

An autologous airway organoid-peripheral blood mononuclear cell (PBMC) co-culture model is generated to assess human coronavirus infection and the interaction between host epithelial cells and immune cells. Airway organoids co-cultured with PBMCs resulted in similar viral replication efficiency and slight reduction in pro-inflammatory cytokines and chemokines after infection.