

Covid-19 vaccination: the promised land?

Jenny Low MBBS MRCPath MPH Ooi Eng Eong BMBS PhD FRCPath

Search by Country, Territory, or Area

WHO Coronavirus Disease (COVID-19) Dashboard Data last updated: 2021/3/2, 6:09pm CET

Data Table **Overview**

i

Explore

۲ 6

Coronavirus Vaccine Tracker

By Carl Zimmer, Jonathan Corum and Sui-Lee Wee Updated March 2, 2021

Israel: New hospitalizations for COVID-19 by age

Shown is the rolling weekly sum of COVID-19 hospitalizations. Data is available at the national level, plus breakdown by regions where vaccination began early or late.

Vaccination in Israel began on December 19 2020. Israel imposed a third national lockdown on January 8 2021.

Source: Rossman, Shilo, Meir, Gorfine, Shalit & Segal (2021). Patterns of COVID-19 pandemic dynamics following deployment of a broad national immunization program. CC BY

Vaccine doses adm	ninistered per hundred		
	Asia		
Maldives	20.6		
Singapore	6.2		
China	2.8		
Sri Lanka	2.2		
Bangladesh	1.9		
Jordar	1.5		
Nepa	1.4		
India	1.0		
Indonesia	1.0		
Macad	0.3		
Hong Kong	0.3		
Myanmai	0.2		
	Middle East		
Israel		93.5	
UAE		60.9	
Bahrain	17.5		
Turkey	10.1		
Qatar	4.9		
Kuwait	4.1		
Saudi Arabia	2.2		
Oman	1.3		
Azerbaijan	0.6		
Lebanon	0.4		
Kazakhstan	0.1		
	North America		
USA	22.5		
Barbados	117		
Canada	47		
Panama	27		
Costa Pica	20		
Movico	10		
Dominican Popublic	0.2		
	0.2		
S	outh America		
Chile	17.6		
Brazil	4.0		
Argentina	2.3		
Peru	0.8		
Colombia	0.3		
Guyana	0.2		
Ecuador	0.1		
0	ceania		
Australia	0.1		
0.0)	50.0	100.0

	Europe		
UK	30.8		
Serbia	21.1		
Malta	17.7		
Denmark	10.4		
Hungary	9.7		
Iceland	9.4		
Poland	8.8		
Lithuania	8.7		
Cyprus	8.7		
Switzerland	8.7		
Norway	8.6		
Greece	8.5		
Portugal	8.5		
Estonia	8.4		
Slovenia	8.3		
Ireland	8.3		
Finland	8.2		
Slovakia	8.0		
Romania	8.0		
Spain	7.7		
Germany	7.4		
Austria	7.2		
Sweden	7.1		
Italy	7.1		
Belgium	6.9		
France	6.7		
Czechia	6.1		
Luxembourg	5.8		
Netherlands	5.6		
Croatia	4.7		
Latvia	3.3		
Bulgaria	3.1		
Russia	2.7		
Albania	0.4		
Belarus	0.2		
Montenegro	0.2		
	Africa		
Morocco	9.8		
Mauritius	0.3		
Algeria	0.2		
Senegal	0.2		
Zimbabwe	0.1		
South Africa	0.1		
0	0	50.0	100.0

Percentage of strongly agree on getting vaccines if offered

Online samples in Brazil, China, Mexico, Russia, and South Africa tend to be more urban, educated, and/or affluent than the general population.

Source: Ipsos

Smallpox

Three Egyptian Mummies 1570-1085 BC

Ramses the Vth Died 1157 BC

18th century rhyme

Where are you going, my pretty maid I'm going a milking, sir, she said May I go with you, my pretty maid You're kindly welcome, sir, she said What is your father, my pretty maid My father's a farmer, sir, she said What is your fortune, my pretty maid My face is my fortune, sir, she said

Smallpox vaccines Jenner 1796

Cowpox lesions on the hand of Sarah Nelmes (case XVI in Jenner's *Inquiry*), from which material was taken for the vaccination of James Phipps below in 1796

Jenner's experiment

- 1st example of vaccination
- The word "vaccination" was coined in honour of Jenner's work
 - Louis Pasteur chose this word after developing a fowl cholera vaccine
 - Vacca is Latin for cow

Smallpox vaccine met with opposition from peers

- The Royal Society rejected his manuscript.
 - "in variance with established knowledge"
 - "he had better not promulgate such a wild idea if he valued his reputation."
- Jenner published his findings in a pamphlet at his own expense.
 - An Inquiry in the Causes and Effects of the Variolae Vaccinae, a Disease Discovered in Some of the Western Counties of England, Particularly Gloucestershir and Known by the Name of Cowpox

Anti-vaccination sentiments

"Now look around, and turn each trifling page, Survey the previous works that please the age; What varied wonders tempt us as they pass! The cowpox, tractors, galvanism and gas in turn appears" Lord Byron

Recognition of Jenner's work

Yours is the comfortable reflection that mankind can never forget that you have lived. Future nations will now by history only that the loathsome smallpox had existed and by you has been extirpated.

Letter from President Thomas Jefferson to Jenner, 1806

Napolean released English prisoners of war upon Jenner's request and remarked that he could not *"refuse anything to such a great benefactor of mankind."*

Types of vaccines

Arcturus/Duke-NUS

BNT162b2 show efficacy ~12 days after 1st dose

Pfizer/BNT

No. at Risk

Unvaccinated	596,618	413,768	262,662	187,784	108,242	37,564	4204
Vaccinated	596,618	414,140	263,179	188,740	109,261	38,299	4288

Cumulative No. of Events									
Unvaccinated	0	1419	2393	3079	3433	3582	3607		
Vaccinated	0	1103	1967	2250	2373	2387	2389		

No. at Risk

Unvaccinated 596,618 414,898 264,437 189,874 109,929 38,467 4310 Vaccinated 596,618 414,933 264,516 190,000 110,076 38,571 4322

Cumulative No. of Events

Unvaccinated	0	17	57	114	157	171	174
Vaccinated	0	6	26	45	52	55	55

Polack et al, NEJM 2020

Dagan et al, NEJM 2021

Serological response at days 7 and 10 after dose 1 of BNT162b2

Kalimuddin et al, manuscript submitted

T cell responses at days 7 and 10 after dose 1 of BNT162b2

Bertoletti Lab Kalimuddin et al, manuscript submitted

T cell responses as a critical determinant of human immunity?

Single dose Lunar-CoV19 protects human ACE2 transgenic mice against lethal SARS-CoV-2 infection

de Alwis, Gan, Chen at al, Molecular Therapy, accepted

CD8+ T cells play a critical role in preventing SARS-CoV-2 infection

de Alwis, Gan, Chen at al, Molecular Therapy, accepted

Clinical evidence for protective role of T cells

Cell Host & Microbe

Persistent Dengue Infection in an Immunosuppressed Patient Reveals the Roles of Humoral and Cellular Immune Responses in Virus Clearance

Graphical Abstract

Authors

Kar-Hui Ng, Summer Lixin Zhang, Hwee Cheng Tan, ..., Paul Ananth Tambyah, Eng Eong Ooi, Hui-Kim Yap

Correspondence

paenkh@nus.edu.sg

In Brief

Examining a lymphopenic kidney transplant patient presented with dengue virus (DENV) infection, Ng et al. observed that the virus persisted in blood and urine despite detectable antibodies. Full resolution of DENV infection coincided with recovery of CD8+ counts, suggesting a role of cellular immunity in sterilizing dengue virus infection.

Article

SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls

https://doi.org/10.1038/s41586-020-2550-z

Received: 20 May 2020

Accepted: 7 July 2020

Published online: 15 July 2020

Nina Le Bert^{1,9}, Anthony T. Tan^{1,9}, Kamini Kunasegaran¹, Christine Y. L. Tham¹, Morteza Hafezi¹, Adeline Chia¹, Melissa Hui Yen Chng¹, Meiyin Lin^{1,2}, Nicole Tan¹, Martin Linster¹, Wan Ni Chia¹, Mark I-Cheng Chen³, Lin-Fa Wang¹, Eng Eong Ool¹, Shirin Kalimuddin⁴, Paul Anantharajah Tambyah^{5,6}, Jenny Guek-Hong Low^{1,4}, Yee-Joo Tan^{2,7} & Antonio Bertoletti^{1,8}

Before and after expansion (SARS-CoV-2 peptides

Nature 2020

Cell Reports

Report

Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients

Anthony T. Tan,^{1,8} Martin Linster,^{1,8} Chee Wah Tan,¹ Nina Le Bert,¹ Wan Ni Chia,¹ Kamini Kunasegaran,¹ Yan Zhuang,¹ Christine Y.L. Tham,¹ Adeline Chia,¹ Gavin J.D. Smith,¹ Barnaby Young,^{2,3,4} Shirin Kalimuddin,^{1,5} Jenny G.H. Low,^{1,5} David Lye,^{2,3,4,6} Lin-Fa Wang,¹ and Antonio Bertoletti^{1,7,9,*}

ARTICLE

Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection

Nina Le Bert¹, Hannah E. Clapham², Anthony T. Tan¹, Wan Ni Chia¹, Christine Y.L. Tham¹, Jane M. Lim², Kamini Kunasegaran¹, Linda W.L. Tan², Charles-Antoine Dutertre³, Nivedita Shankar², Joey M.E. Lim¹, Louisa Jin Sun⁴, Marina Zahari², Zaw Myo Tun², Vishakha Kumar², Beng Lee Lim¹, Siew Hoon Lim⁵, Adeline Chia¹, Yee-Joo Tan^{6,7}, Paul Anantharajah Tambyah⁸, Shirin Kalimuddin^{1,9}, David Lye^{6,10,11,12}, Jenny G.H. Low^{1,9}, Lin-Fa Wang¹, Wei Yee Wan⁵, Li Yang Hsu², Antonio Bertoletti^{1,13*}, and Clarence C. Tam^{2,14*}

SARS-CoV-2 responsive T cells protect against COVID-19

David Wyllie and the EDSAB-HOME investigators, BioRix Nov 2020 CD8 T cells compensate for impaired humoral immunity in COVID-19 patients with hematologic cancer

Bange, EM, et al, Biorix, Feb 2021

Conclusion

- Total binding antibodies and T cells appear sufficient for protection against Covid-19
- Depletion of T cells but not B cells associated with severe Covid-19 in animal model and in hematological malignancy patients
- Early T cell response associated with better clinical outcome in Covid-19 patients
- Vaccine that produces good T cell immunity would be less impacted by SARS-CoV-2 variants

Acknowledgements

Duke-NUS

Kuan Rong Chan Esther Gan Wy Ching Ng Shiwei Chen Milly Choy Hwee Cheng Tan Summer Zhang Tanamas Siriphanitchakorn Clement Yau John Low Ashwin Bhatta

ViREMiCS

Eugenia Ong Rukie de Alwis Wan Ying Leong Ayesa Syenina

All our clinical trial volunteers

Singapore General Hospital

Jenny Low Shirin Kalimuddin Candice Chan Dorothy Ng Limin Wijaya Abigail Wong

SingHealth Investigational Medicine Unit Greg Li Eleanor Lim Aland Shum Robyn Yip Sue Tee Clinical Trial Coordinators

Arcturus Therapeutics Inc

Pad Chivukula Steve Hughes Sean Sullivan and the LUNAR-CoV development team

Singapore MIT Alliance in Research and Technology (SMART)

Yie Hou Lee Liang Cui Steve Tannenbaum

Human Metabolome Technologies Inc Jun Tanaka

